Original Article

Study on water safety in Siem Reap, Cambodia -Surveys on drinking and daily life water quality at schools and their surrounding houses-

Kumi YOKOYAMA¹, Mami TSUKIJI², Noriaki NUKANOBU³, Yasushi TAKEI⁴, Hideki KATANO^{5,6} and Keiko SHIMIZU⁵

¹ Juntendo University Faculty of Health Care and Nursing
 ² Kanagawa University of Human Services
 ³ Hiroshima International University
 ⁴ Juntendo University School of Health Sciences and Nursing
 ⁵ Tokai University
 ⁶ Venex Research Institute

(Received: Apr/27/2011) (Accepted: May/9/2011)

Summary

We conducted a simplified water quality survey on contamination with general bacteria, *Escherichia coli* and arsenic contained in drinking and daily life water at schools and their surrounding houses in five districts in Siem Reap, Cambodia.

As a result, it was found that 23 out of 31 samples (74.2%) contained general bacteria exceeding the water quality standard. *E. coli* was also found in 16 samples (51.6%). Moreover, 9 out of 40 samples (22.5%) contained arsenic exceeding 5 μ g/ ℓ , and samples at some sites contained 50 μ g/ ℓ or more up to 100 μ g/ ℓ . Arsenic was also found in 2 out of 29 samples (6.9%) of well water; 7 out of 11 samples (63.6%) of filtered water by Ceramic Water Purifiers (CWPs). The highest level of arsenic was found in filtered water.

Though these CWPs are used to eliminate microorganisms, the survey indicated the necessity for their strict and appropriate controls and handling because *E. coli* was found in filtered water, too. In addition, since more arsenic was found in filtered water than in well water in Siem Reap, which is said to be less contaminated with arsenic, we assumed that arsenic contamination of the tested water in this survey may be associated with the CWPs. (Med Biol **155**: 415-423 2011)

Key words: Surveys on water quality, Ceramic Water Purifiers, Bacterial contamination, Arsenic contamination, Siem Reap

Introduction

The Kingdom of Cambodia, one of the least developed among developing countries in Asia, is located in Southeast Asia. It is a hot country where, during the dry season, the temperature exceeds 40 deg C. As represented in its history in which many of the intelligentsia were massacred under Pol Pot's dictatorship during the 1960s and 70s, the country is still one of the poorest countries in Asia, the nation is economically depressed and the educational and medical environments have not been developed sufficiently^{1,2)}. Ingestion of safe water is important to support life under such natural and social environments. However, in Cambodia, while urban water supply is being promoted, it is not developed sufficiently in rural and suburban areas. The percentage of population with continuous access to improved

sanitation is 17% and that with continuous access to improved water sources is also as little as 41% (as of 2004)^{3,4)}. Since the coverage for water supply also correlates with the number of victims of water borne diseases and the infant mortality rate^{5,6)}, water facility development is important to improve living environments in Cambodia. For this reason, the Japan International Cooperation Agency (JICA) and organizations in various other countries are proactively developing water supply and digging wells to supply safe water as a form of international aid. However, soils and groundwater in Phnom Penh, the capital of Cambodia, and the Mekong River basin are contaminated with arsenic⁷), and chronic exposure to arsenic by residents in these regions has been reported^{8,9}, highlighting the problem of utilizing well water in the contaminated regions. Meanwhile, arsenic contamination levels in Cambodia differ among regions, and Siem Reap, which attracts many tourists, is reported to be less contaminated with arsenic⁷⁾, and actually, water quality tests such as well water served for drinking have rarely been reported.

In light of this fact, we conducted a simplified water quality test concerning contamination with general bacteria, *Escherichia coli* and arsenic contained in water used for drinking or daily use at elementary, junior high, and high schools and their surrounding houses in Siem Reap, Cambodia, to examine the safety.

Survey method

1. Period

The surveys were performed from February 16 through February 19, 2010 (4 days).

2. Regions

The subject of the surveys were 16 elementary, junior high, and high schools (Table 1) and their surrounding houses in 5 districts in Siem Reap (Fig. 1).

3. Surveyed water

Well water (unfiltered) and water filtered using

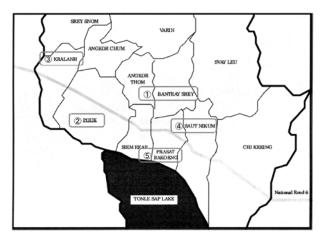


Fig. 1. Surveyed districts in Siem Reap

(1) Banteay Srey district		(4) Saut Nikum district			
a.	Banteay Srey Elementary School	a.	Damdek High School		
b.	Banteay Srey High School	b.	Kumrursrok Elementary School		
с.	Rum Chek Junior High School	c.	Khchas Elementary & Junior High School		
(2) Pouk district		d.	Samroang Junior High School		
a.	Sasar Sdom Junior High School				
b.	b. Pouk Junior High & High School		(5) Prasat Bakorng district		
c.	Tear Banh Elementary School	a.	Ror Lous Elementary & Junior High School		
(3) Kralanh district		b. Prasat Bakorng High School			
a.	Mohasamaki Elementary School	с.	Sret Elementary & Junior High School		
b.	Krolanch High School				
c.	Kompong Tkov Elementary School				

 Table 1.
 Names of surveyed districts and schools in Siem Reap

ceramic water purifiers (CWPs) (Fig. 2-a to 2-c) used as drinking water at each sampling point were surveyed. The survey used 31 samples for bacteria tests for general bacteria and *E. coli* and 40 samples for arsenic. The surveyed CWPs are those mainly used to eliminate microorganisms contained in well water by filtering it, and are regularly used at schools and their surrounding houses in the surveyed areas.

4. Analysis method

Approximately 150 ml of tested water was collected in a sterile polyethylene bottle (Nalgene), and kept in a cooling bag with ice packs inside or in a refrigerator until tested. A sheet medium for simplified identification "Sanita-kun (Sun Co., Ltd.)" was used to detect general bacteria and *E. coli*. The water was diluted 10-fold with sterile Phosphate Buffered Saline, cultivated at 37 deg C for 48 hours, and then the viable count (colony forming unit: cfu) per ml was measured. Arsenic was semi-quantitatively measured using Merckoquant® arsenic test strips [ultrasensitive type] (Merck Japan Co., Ltd.). The survey results were assessed in accordance with the water quality standards of Japan/WHO⁵⁾ and Cambodia¹¹⁾.

Results

1. Survey status

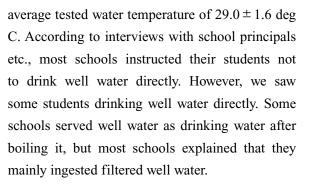

The weather when tested water was collected was good on all the days during the survey period, with an average temperature of 31.8 ± 2.4 deg C; an average humidity of $59.8 \pm 8.6\%$; and an

Fig. 2-a. Filtration device

Fig. 2-b. Ceramic Water Purifiers (CWPs)

At Pouk Junior High & High School (Table 1. (2)-b), one of the surveyed schools in the Pouk district, well water at school was not used as drinking water, and both teachers and students brought their own water in a plastic bottle from home; therefore, they were excluded from the survey targets.

Bacteriological contamination status (Table 2)

General bacteria were found in all of the 31 samples of the bacteria tests. Only 5 out of 22 samples (22.7%) of well water (unfiltered) and 3 out of 9 samples (33.3%) of filtered water satisfied the water quality standard (100 cfu/ml or below) for general bacteria in Japan. The well water sample at Sret Elementary & Junior High School ((5)-c) contained the smallest number of general bacteria (5 cfu/ml). In contrast, the filtered water sample at Khchas Elementary & Junior High School ((4)-c) contained the largest number (1.4 \times 10⁵ cfu/ml).

E. coli was found in 16 out of 31 samples (51.6%), and about a half of the samples satisfied the Japanese or WHO's water quality standard

Fig. 2-c. Injection of well water into the filtration device

	0			· · · · ·
	Name of surveyed district and school	Detected bacteria	Well water (unfiltered)	Filtered water (filtered)
(1)	Banteay Srey district			
		General bacteria	1.2×10^{2}	$6.5 \times 10^{*}$
	a. Banteay Srey Elementary School	E. coli	-	-
-		General bacteria	$5.7 \times 10^{2*}$	$2.0 \times 10^{3*}$
	b. Banteay Srey High School	E. coli	$3.2 \times 10^{*}$	3*
-		General bacteria	$4.4 \times 10^{2**}$	NA
	c. Rum Chek Junior High School	E. coli	** -	NA
(2)	Pouk district	J		
. ,	a. Sasar Sdom Junior High School	General bacteria	NA	7.5×10^{3}
		E. coli	NA	1.3×10^{3}
-		General bacteria	1.5×10^{2}	NA
	c.Tear Banh Elementary School	E. coli		NA
(3)	Kralanh district	1		
		General bacteria	$9.9 \times 10^{*}$	NA
	a. Mohasamaki Elementary School	E. coli	8*	NA
-		General bacteria	6.8×10^{3}	NA
	b. Krolanch High School	E. coli	1.4×10^{3}	NA
-		General bacteria	1.7×10^{3}	NA
	c. Kompong Tkov Elementary School	E. coli	1.7×10^{3}	NA
(4)	Saut Nikum district			
()		General bacteria	$4.2 \times 10^{3**}$	NA
	a. Damdek High School	E. coli	$2.9 \times 10^{2**}$	NA
-		General bacteria	$1.4 \times 10^{4*}$	NA
	b. Kumrursrok Elementary School	E. coli	$1.7 \times 10^{3*}$	NA
-	c. Khchas Elementary & Junior	General bacteria	9.7×10^2	1.4×10^{5}
	High School	E. coli	2	7.0×10
-		General bacteria	$2.3 \times 10^{3*}$	NA
	d. Samroang Junior High School	E. coli	$1.9 \times 10^{2**}$	NA
5)	Prasat Bakorng district	1		
	a. Ror Lous Elementary & Junior	General bacteria	1.4×10	NA
	High School	E. coli	-	NA
-		General bacteria	NA	$7.5 \times 10^*$
	b. Prasat Bakorng High School	E. coli	NA	* -
-		General bacteria	$\frac{1.0 \times 10^*}{1.0 \times 10^*}$	2.4×10^{2}
	c. Sret Elementary & Junior High School	E. coli	*	2.1 ** 10

Table 2. Average number of	general bacteria and <i>E. coli</i> detected in unfiltered and filtered water (cfu/ml)
Tuble 2. Therage number of	concrui succerta ana Li con accecca in annicerca ana interca water (ciu/ 1111 j

- : Detection limit or below

[★] NA ∶ Not collectable or analyzable

* When there is more than one sample, the average value is shown (* : n = 2, ** : n = 3).

(which does not allow the detection of *E. coli*). For well water, the sample collected at Kumrursrok Elementary School ((4)-b) contained the largest number of *E. coli* (3.3 × 10³ cfu/ml). For filtered water, the sample collected at Sasar Sdom Junior High School ((2)-a) contained the largest number (1.3 × 10³ cfu/ml). The original purpose of the CWPs is to filter bacteria, but *E. coli* was found in 3 out of 9 samples (33.3%) of filtered water in this survey.

The water quality standards for both general bacteria and *E. coli* were satisfied in 8 out of 31 samples (25.8%) - 5 out of 22 samples (4.5%) of unfiltered water; 3 out of 9 samples (33.3%) of filtered water.

3. Arsenic detection status (Table 3)

Arsenic of 5 to 50 µg or more up to 100 µg / ℓ was found in 9 out of 40 samples in total (22.5%) in the surveyed five districts in Siem Reap. It was found in 2 out of 29 samples (6.9%) of unfiltered well water and 7 out of 11 samples (63.6%) of filtered water.

Japan and the WHO set the water quality standard for arsenic and arsenic compounds at 10 $\mu g/\ell$ or below, while Cambodia sets it at 50 $\mu g/\ell$ or below. While 5 samples had a level equivalent to or higher than the Japanese and the WHO's water quality standards, only 1 sample had such a level against the Cambodian standard.

The sample of filtered water installed at Sret Elementary & Junior High School ((5)-c) exceeded both standards, in which arsenic from $50 \ \mu g/\ell$ to $100 \ \mu g/\ell$ was found. Then, the water was collected and tested again, but the result was the same. The school explained that its well water was filtered before serving as drinking water, but arsenic was not found in unfiltered well water. Water used at the homes of the school principal and the teachers who lived near the school was also tested, but again, no arsenic was found. The result was the same for 2 samples of the well water shared among the surrounding houses. That is, while arsenic was not found in the well water at Sret Elementary & Junior High School ((5)-c) and its surrounding houses, filtered well water containing arsenic exceeding the standards was found.

For well water, arsenic of 5 μ g/ ℓ to 10 μ g/ ℓ was found in each sample at Mohasamaki Elementary School ((3)-a) and Damdek High School ((4)-a). For filtered water, arsenic of 5 μ g/ ℓ to 25 μ g/ ℓ was found in 6 samples in total; each sample at Banteay Sreg High School ((1) -b), Sasar Sdom Junior High School ((2)-a), a house near Kompong Tkov Elementary School ((3)c), and Prasat Bakorng High School ((5)-b); and 2 samples at Khchas Elementary & Junior High School ((4)-c).

Considerations

1. General bacteria and E. coli

CWPs are used to filter bacteria which may cause diarrhea, and are said to be effective for reducing its incidence if they can remove 99.0% or more of E. coli¹¹⁻¹³⁾. However, in this survey, only 8 out of the 31 samples of the bacteria tests satisfied the water quality standards for both general bacteria and E. coli, which indicates fecal contamination. Moreover, one of the well water samples contained the smallest number of general bacteria, while one of the filtered water samples contained the largest number. E. coli was found in filtered samples (3 out of 9 samples). Through the observation of the CWPs condition by the naked eye while collecting water samples, we saw a type of oil film floating on the surface of water inside the CWPs or the attachment of algae or funguslike organisms, from which it was found that CWPs were not managed hygienically. For this reason, while filtered water is generally considered to be clean, improper hygiene management of the CWPs conversely may cause contamination with general bacteria or E. coli, resulting in health damages such as waterborne diseases. To prevent such diseases, it would be important to provide thorough education on the proper management and handling of CWPs before using these CWPs to suppress bacterial growth.

2. Arsenic

As a result of attempts to detect arsenic in well water (unfiltered) and filtered water, it was found that 9 out of 40 samples contained arsenic, but those exceeding the Japanese and the WHO's water quality standards were not found in well water. Though the arsenic level is said to be connected to the excavation depth of the well⁵⁾, it is difficult to examine such a correlation because the arsenic level detected in well water in this survey was below the standards and the detected quantity was not sufficiently high. However, the result of this survey is considered to reflect a land characteristic of Siem Reap, which is generally said to be less contaminated with arsenic in Cambodia⁷. Meanwhile, more arsenic was found in filtered water than in well water, and the highest level of arsenic was also found in one of the filtered water samples. In Cambodia, wells are typically dug and groundwater is pumped for drinking water in suburban and rural areas, except major cities such as Phnom Penh, the capital¹⁴). Therefore, CWPs which can be used inexpensively and conveniently are recommended to mainly eliminate microorganisms for extracting clean water, and they are widely used in rural and suburban

Name of surveyed district and school	Well water (unfiltered)	Filtered water (filtered)	
(1) Banteay Srey district			
a. Banteay Srey Elementary School	0	0	
b. Banteay Srey High School	0	5	
c. Rum Chek Junior High School	0	0	
(2) Pouk district			
a. Sasar Sdom Junior High School	NA	5	
c. Tear Banh Elementary School	0	NA	
(3) Kralanh district			
a. Mohasamaki Elementary School	5	NA	
b. Krolanch High School	0	NA	
c.Kompong Tkov Elementary School	0	10	
(4) Saut Nikum district			
a. Damdek High School	5	0	
b. Kumrursrok Elementary School	0	NA	
c. Khchas Elementary & Junior High School	0	$10 \sim 25^*$	
d. Samroang Junior High School	0	NA	
(5) Prasat Bakorng district			
a. Ror Lous Elementary & Junior High School	0	NA	
b. Prasat Bakorng High School	0	10	
c. Sret Elementary & Junior High School	0	$50 \sim 100$	

Table 3. Arsenic detection status in unfiltered and filtered water ($\mu g/l$)

* NA: Not collectable or analyzable

% When there is more than one sample, the range value is shown (*: n = 2).

areas^{11,13}). On the other hand, these CWPs do not work sufficiently for filtering chemical substances contained in water such as arsenic, hence their use for well water which contains a high level of arsenic is not recommended¹¹⁾. Therefore, it is not surprising that arsenic was also found in filtered water if the well water was contaminated with arsenic, but this survey also revealed a mixture of arsenic in drinking water due to the use of the CWPs per se. This also led to an assumption that well water may be more exposed to arsenic by the use of CWPs than it is directly drunk in a land which is said to have less arsenic contamination of soils, such as Siem Reap. From local interviews about the CWPs conducted based on the arsenic detection results, it was found that three companies manufactured those CWPs in Cambodia but further information such as their manufacturing locations or materials was not obtained. Since it's apparent that groundwater is contaminated with arsenic in specific regions of Cambodia, including Phnom Penh, the capital, and the Mekong River basin⁷⁻⁹, it would be necessary to identify the regions where soils used as ingredients of the CWPs are collected in further studies and confirm whether or not the CWPs are contaminated with arsenic during their manufacturing processes.

Some principals at the surveyed schools explained that they instructed their students to bring water boiled at their home or mineral water in a plastic bottle to school or drink water filtered with a CWP placed in each classroom. Nevertheless, we saw some students drinking well water directly, and found that those instructions were not fully observed. It is necessary to disseminate health education so that people in Cambodia can use safe water, and also to recommend strict hygiene management of the CWPs. In addition, the correlation between the CWPs and detection of arsenic would also need to be solved.

Acknowledgments

We express sincere thanks to the school principals, the teachers, the students, and the residents living in the vicinity of the surveyed schools who gave us their full cooperation throughout the survey; Mr. Kleng Sokhour, the former official manager of Cambodia Japan Center, who supported us fully with the coordination with these schools; and Mr. Srey Sunthan, interpreter of Cambodian Poor Children Support Organization.

Reference

- World Health Organization: Country health information profiles, Cambodia, http://www. wpro.who.int/NR/rdonlyres/4A0D3372-8A 69-4DE9-A643-1B5F875F8CEE/0/8final CAMpro09.pdf
- Akiba T: The Health Status in Cambodia -Review from the Human Resource Point of View-, Journal of Kyushu University of Health and Welfare, 8, 1-8, 2007
- Ministry of Health, Labour and Welfare of Japan : A Report of Investigation for International Contribute to Promotion Water Service, 2009
- http://www.mhlw.go.jp/topics/bukyoku/kenkou/ suido/hourei/jimuren/h21/dl/210601-10.pdf
- Ministry of Foreign Affairs of Japan: Japan's ODA Data by Country2009, http://www. mofa.go.jp/mofaj/gaiko/oda/shiryo/kuni/09_ databook/pdfs/01-02.pdf
- World Health Organization: GUIDELINES FOR DRINKING-WATER QUALITY 3rd Edition
- Health and Welfare Statistics Association: Journal of health and welfare statistics, 56(9), pp.279-282, 2009
- Save Cambodia's Wildlife: The Atlas of Cambodia National Poverty and Environment Maps, pp.82-83, 2006
- 8) Agusa T, Kunito T, et al.: Arsenic Pollution

in Cambodia, Biomedical Research on Trace Elements, 13(4), 254-255, 2002

- Agusa T, Kubota R, et al.: Arsenic Pollution in Groundwater of Vietnam and Cambodia: A Review, Biomedical Research on Trace Elements, 18(1), 35-47, 2007
- 10) MINISTRY OF INDUSTRY, MINES AND ENERGY : Drinking Water Quality Standards KINGDOM OF CAMBODIA NATION RELIGION KING, 2004
- Hagan, J.M., Harley, N., et al.: Resource Development International - Cambodia Ceramic Water Filter Handbook Version 1.1, p.10, 2009, http://s189535770.onlinehome. us/pottersforpeace/wp-content/uploads/finalrdic-ceramic-filter-manual1-1-250209-noappendices.pdf
- 12) Aguilar M: Access to safe drinking water

in Cambodia -Available sources and point - of - use water treatment-, The Journal of Science and Health at The University of Alabama, 7, 28-34, 2010, http://bama. ua.edu/~joshua/archive/may10/aguilar.pdf

- 13) Michael Roberts, M.S.: CERAMIC WATER PURIFIER CAMBODIA FIELD TESTS IDE Working Paper No. 1, pp.3-9, 2003, http:// pottersforpeace.org/wp-content/uploads/cwpcambodia-field-tests-2003-10.pdf
- 14) Biswas, Asit K., et al: Asian Water Development Outlook 2007 Country Paper Cambodia, Asian Development Bank, 2007, http://www.adb.org/Documents/Books/ AWDO/2007/cr02.pdf

Correspondence address: Kumi YOKOYAMA Juntendo University Faculty of Health Care and Nursing 2-5-1 TAKASU, URAYASU, CHIBA 279-0023 JAPAN TEL: 047-350-3062 FAX: 047-350-0654 E-mail: kmyokoya@juntendo.ac.jp

カンボジア シェムリアップ州内における水の安全性についての検討 ー学校および周辺民家の飲用および生活用水の水質調査-

横山久美¹、築地眞実²、糠信憲明³、武井 泰⁴、片野秀樹^{5,6}、志水恵子⁵

順天堂大学医療看護学部
 神奈川県立保健福祉大学
 3 広島国際大学
 4 順天堂大学保健看護学部
 ⁵ 東海大学
 ⁶ ベネクス総合研究所

要旨

カンボジア シェムリアップ州内 5 地区にある学校とその周辺民家において、飲用水 と生活用水の一般細菌、大腸菌およびヒ素による汚染状況について簡易水質調査を行っ た。

その結果、水質基準以上の一般細菌は 31 検体中 23 検体(74.2%)、大腸菌は 16 検体(51.6%)が検出された。さらにヒ素は 40 検体中 9 検体(22.5%)から 5 µg/ ℓ を超え、 50 µg/ ℓ 以上 100 µg/ ℓ 以下に達した地点もあった。また最も高濃度のヒ素は素焼濾過 器による濾過後の水から検出された。

素焼濾過器は微生物除去の目的で使用されるが、フィルタリング後の水からも大腸 菌が検出されたため、素焼濾過器の適切な管理、取り扱いを徹底する必要性が示唆され た。またシェムリアップ州はヒ素汚染の少ない地域であるが、井戸水に比べフィルタリ ング後の水からヒ素が多く検出されたことから、本調査における被検水のヒ素汚染は素 焼濾過器と関連性があることが推察された。

キーワード:水質調査、素焼濾過器、細菌汚染、ヒ素汚染、シェムリアップ

連絡先:横山久美 順天堂大学医療看護学部 千葉県浦安市高洲 2-5-1 (〒 279-0023) TEL:047-350-3062 FAX:047-350-0654 E-mail:kmyokoya@juntendo.ac.jp

